THE DEGREE-DISTANCE OF SOME CLASS OF GRAPHS

$\boldsymbol{\mathrm{S.Sujitha}}^{1}$ and $\boldsymbol{\mathrm{J.Jenisha}}^{2}$

Department of Mathematics Holy Cross College(Autonomous) Nagercoil-629004.

Abstract

Let $G = (V,E)$ be a finite connected graph. The degree-distance $D'(G)$ of a graph G is defined as $D'(G) = \sum_{\{u,v\} \subseteq V(G)} [deg(u) + deg(v)]d(u,v)$ where $deg(w)$ is the degree of the vertex *w* in *G* and $d(u, v)$ is the distance between *u* and *v*. In this paper, we determine the degreedistance $D'(G)$ for shadow graphs of complete graph, complete bipartite graph and study the relation between them. Also, it is shown that, the degree-distance of K_n is less than the degreedistance of shadow of *Kn.*

Keywords*:* distance, degree, degree-distance, shadow graph.

AMS Subject Classification: 05C12.

1. Introduction

By a graph $G = (V, E)$, we mean a finite undirected connected graph. The *order* and *size* of *G* are denoted by *n* and *p* respectively. For vertices *u* and *v* in a connected graph *G*, the distance $d(u, v)$ is the length of a shortest $u - v$ path in *G*. The *degree* of a vertex v in a graph *G* is the number of edges of *G* incident with *v* and is denoted by $deg_G v$ or $deg v$. A graph *G* is *complete* if every two distinct vertices of *G* are adjacent. A complete graph of order *n* is denoted by K_n . A *bipartite graph G* is a graph whose vertex set $V(G)$ can be partitioned into two subsets V_1 and V_2 such that every edge of *G* joins V_1 with V_2 ; (V_1, V_2) is called a *bipartition* of *G*. If *G* contains every edge joining *V*¹ and *V*2, then *G* is called a *complete bipartite graph*. The complete bipartite graph with bipartition (V_1, V_2) such that $|V_1|=m$ and $|V_2|=n$ is denoted by $K_{m,n}$. The shadow graph $S(G)$ of a connected graph G is constructed by taking two copies of G say G' and G'' . Join each vertex u' in G' to the neighbours of the corresponding vertex u'' in G'' . Let $G = (V,E)$ be a finite connected graph. The degree-distance $D'(G)$ of a graph *G* is defined as $D'(G) = \sum_{\{u,v\} \subseteq V(G)} [deg(u) + deg(v)]d(u,v)$ where $deg(w)$ is the degree of the vertex *w* in

G and $d(u, v)$ is the distance between *u* and *v*. The union of two graphs $G_1 = (V_1, E_1)$ and

 $G_2 = (V_2, E_2)$ is a graph $G(V,E)$ where $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$. The sum $G_1 + G_2$ is the graph $G_1 \cup G_2$ together with all the lines joining points of V_1 to the points of V_2 . The product $G_1 \times G_2$ as having $V = V_1 \times V_2$ and $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent if $u_1 = v_1$ and u_2 is adjacent to v_2 in G_2 or u_1 is adjacent to v_1 in G_1 and $u_2 = v_2$. The line graph $L(G)$ of G is a graph in which the vertices are the lines of *G* and two points in *L*(*G*) are adjacent iff the corresponding lines are adjacent in *G.* The degree distance seems to have been considered first by Dobrynin and Kochetova [1] and practically at the same time by Gutman [2], as a graphtheoretical descriptor for characterizing alkanes and then the same was studied by various authors. In the mathematical literature $D'(G)$ was investigated by Tomescu [4]. In this paper, we determine the degree-distance $D'(G)$ for shadow graphs of complete graph, complete bipartite graph and study the relation between them.

Throughout this paper *G* denotes a connected graph with at least two vertices. Our other notations are standard and taken mainly from [3]

Observation 1.1.[3] $K_m + K_n = K_{m+n}$

Observation 1.2. [3] $\overline{K_m} + \overline{K_n} =$

2. Degree-Distance of Some Graphs

Theorem 2.1. For a complete graph of order *n*, the degree distance is $n(n-1)^2$ where **Proof.**

Consider a complete graph K_n with *n* vertices,

The degree distance of K_n is

$$
D'(K_n) = \sum_{u,v \in V} [\deg u + \deg v] d(u,v)
$$

$$
= \sum_{u,v \in V} [n-1+n-1] (1)
$$

$$
= nC_2 . 2(n-1)
$$

Hence $D'(K_n) = n(n-1)^2$

Corollary 2.2. The degree distance of a sum of two complete graphs K_m and K_n is

 $(m + n)(m + n - 1)^2$ for all

Proof.

The proof is obvious by observation 1.1.

Theorem 2.3. For a complete bipartite graph $K_{m,n}$, the degree distance is $mn(3m + 3n - 4)$ **Proof.**

$$
D'(K_{m,n}) = \sum_{u,v \in V} [\deg u + \deg v] d(u,v)
$$

= $\sum_{u \in V_1, v \in V_2} [\deg u + \deg v] d(u,v) + \sum_{u,v \in V_1} [\deg u + \deg v] d(u,v) +$
+ $\sum_{u,v \in V_2} [\deg u + \deg v] d(u,v)$
= $\sum_{u \in V_1, v \in V_2} (n+m) (1) + \sum_{u,v \in V_1} (n+n) (2) + \sum_{u,v \in V_2} (m+m) (2)$
= $mn(m+n) + mC_2 \cdot 4n + nC_2 \cdot 4m$
= $mn(m+n) + 2mn(m-1) + 2mn(n-1)$

Hence $D'(K_{m,n}) = mn(3m + 3n - 4)$

Corollary 2.4. $D'(\overline{K_m} + \overline{K_n}) = mn(3m + 3n - 4)$

Proof.

By observation 1.2,
$$
D'(\overline{K_m} + \overline{K_n}) = mn(3m + 3n - 4)
$$

Therem 2.5. The degree distance of a product of two complete graphs K_m and K_n is

 $mn(m + n - 2)(2mn - m - n)).$

Proof.

$$
D'(K_m \times K_n) = \sum_{u,v \in V} [\deg u + \deg v] d(u,v)
$$

\n
$$
= \sum_{u \in V_1, v \in V_2, x \in V_2} [\deg(u,v) + \deg(u,x)] d[(u,v), (u,x)] +
$$

\n
$$
\sum_{u,v \in V_1, x \in V_2} [\deg(u,x) + \deg(v,x)] d[(u,x), (v,x)] +
$$

\n
$$
\sum_{u,v \in V_1, x,y \in V_2} [\deg(u,x) + \deg(v,y)] d[(u,x), (v,y)]
$$

\n
$$
= \sum_{u \in V_1, v \in V_2, x \in V_2} (m + n - 2 + m + n - 2)(1) +
$$

\n
$$
\sum_{u,v \in V_1, x \in V_2} (m + n - 2 + m + n - 2)(1) +
$$

\n
$$
\sum_{u,v \in V_1, x,y \in V_2} (m + n - 2 + m + n - 2)(2)
$$

\n
$$
= m \cdot nC_2 . 2(m + n - 2) + n \cdot mC_2 . 2(m + n - 2) +
$$

$$
[n(m-1)(n-1) + n(m-2)(n-1) + \dots + n(n-1)].
$$

$$
4(m+n-2)
$$

$$
= mn(m+n-2)(n-1+m-1+2mn-2m-2n+2)
$$

Hence $D'(K_m \times K_n) = mn(m+n-2)(2mn-m-n)$

Theorem 2.6. The degree distance of a line graph of a complete graph of n vertices is

$$
(n-2)(n^4-4n^3+5n^2-2n).
$$

Proof.

$$
D'[L(K_n)] = \sum_{u,v \in V} [\deg u + \deg v] d(u,v)
$$

\n
$$
= \sum_{u,v \in E(K_n) \& u,v \text{ adjacent in } K_n} [\deg u + \deg v] d(u,v) +
$$

\n
$$
\sum_{u,v \in E(K_n) \& u,v \text{ not adjacent in } K_n} [\deg u + \deg v] d(u,v)
$$

\n
$$
= \sum_{u,v \in E(K_n) \& u,v \text{ adjacent}} [2(n-2) + 2(n-2)]1 +
$$

\n
$$
\sum_{u,v \in E(K_n) \& u,v \text{ not adjacent}} [2(n-2) + 2(n-2)]2
$$

\n
$$
= \frac{n c_2}{2} 2(n-2) .4(n-2) + \frac{n c_2}{2} [n c_2 - 1 - 2(n-2)] .8(n-2)
$$

\n
$$
= n c_2 .4(n-2)^2 + 4 . (n c_2)^2 (n-2) - 4 . n c_2 (n-2) -
$$

\n
$$
8 . n c_2 (n-2)^2
$$

\n
$$
= (n-2)[2n^3 - 2n^2 - 4n^2 + 4n + n^4 + n^2 - 2n^3 - 2n^2 + 2n -
$$

\n
$$
4n^3 + 12n^2 - 8n]
$$

Hence $D'[L(K_n)] = (n-2)(n^4 - 4n^3 + 5n^2 - 2n)$

3 . Degree-Distance of Some Shadow Graphs

Theorem 3.1. The degree distance of a shadow of a complete graph of order n is

 $n(n-1)(7n-1)$ for $n \ge 3$

Proof.

$$
D'[S(K_n)] = \sum_{u,v \in V} [\deg u + \deg v] d(u,v)
$$

\n
$$
= \sum_{u,v \in V'} [\deg u + \deg v] d(u,v) + \sum_{u,v \in V''} [\deg u + \deg v] d(u,v) +
$$

\n
$$
\sum_{u \in V',v \in V''} \sum_{u,v \text{ are adjacent}} [\deg u + \deg v] d(u,v) +
$$

\n
$$
\sum_{u \in V',v \in V''} \sum_{u,v \text{ are not adjacent}} [\deg u + \deg v] d(u,v)
$$

\n
$$
= \sum_{u,v \in V'} (2n - 2 + 2n - 2)1 + \sum_{u,v \in V''} (n - 1 + n - 1) (2) +
$$

\n
$$
\sum_{u \in V',v \in V''} \sum_{u,v \text{ are adjacent}} (2n - 2 + n - 1) 1 +
$$

\n
$$
\sum_{u \in V',v \in V''} \sum_{u,v \text{ are not adjacent}} (2n - 2 + n - 1) (2)
$$

\n
$$
= nC_2 .4(n - 1) + nC_2 .4(n - 1) + n(n - 1) .3(n - 1) +
$$

\n
$$
n .6(n - 1)
$$

\n
$$
= (n - 1) (4n^2 - 4n + 3n^2 + 3n)
$$

\n
$$
= (n - 1) (7n^2 - n)
$$

\nHence $D'[S(K_n)] = n(n - 1)(7n - 1)$

Remark 3.2. $D'[S(K_n)] = 28$ for

Remark 3.3. From theorem 2.1 and 3.1, we can easily observe that, the degree distance of a complete graph of order n is less than the degree distance of a shadow of complete graph of n vertices .

Theorem 3.4. The degree distance of a shadow of complete bipartite graph $K_{m,n}$ is

 $20mn(m + n) - 12mn$.

Proof

$$
D'[S(K_{m,n})] = \sum_{u,v \in V} [\deg u + \deg v] d(u,v)
$$

\n
$$
= \sum_{u,v \in V_1'} [\deg u + \deg v] d(u,v) + \sum_{u,v \in V_2'} [\deg u + \deg v] d(u,v)
$$

\n
$$
+ \sum_{u \in V_1', v \in V_2'} [\deg u + \deg v] d(u,v) + \sum_{u,v \in V_1''} [\deg u + \deg v] d(u,v) + \sum_{u \in V_1'', v \in V_2''} [\deg u + \deg v] d(u,v) + \sum_{u \in V_1'', v \in V_2''} [\deg u + \deg v] d(u,v) + \sum_{u \in V_2', v \in V_2''} [\deg u + \deg v] d(u,v) + \sum_{u \in V_1', v \in V_2''} [\deg u + \deg v] d(u,v) + \sum_{u \in V_2', v \in V_1''} [\deg u + \deg v] d(u,v)
$$

$$
= \sum_{u,v \in V_1'} (2n + 2n) (2) + \sum_{u,v \in V_2'} (2m + 2m) (2)
$$

+
$$
\sum_{u \in V_1',v \in V_2'} (2n + 2m) (1) + \sum_{u,v \in V_1''} (n + n) (2)
$$

+
$$
\sum_{u,v \in V_2''} (m + m) (2) + \sum_{u \in V_1'',v \in V_2''} (n + m) (3)
$$

+
$$
\sum_{u \in V_1',v \in V_1''} (2n + n) (2) + \sum_{u \in V_2',v \in V_2''} (2m + m) (2)
$$

+
$$
\sum_{u \in V_1',v \in V_2''} (2n + m) (1) + \sum_{u \in V_2',v \in V_1''} (2m + n) (1)
$$

=
$$
mC_2 \cdot 8n + nC_2 \cdot 8m + 2mn(n + m) + mC_2 \cdot 4n + nC_2 \cdot 4m + 3mn(n + m) + 6m^2n + 6n^2m + mn(2n + m) + mn(2m + n)
$$

=
$$
6[mn(m - 1) + mn(n - 1)] + 14mn(m + n)
$$

=
$$
6mn(m - 1 + n - 1) + 14mn(m + n)
$$

=
$$
4mn(5m + 5n - 3)
$$

Hence $D' [S(K_{m,n})] = 20mn(m+n)$ –

Remark 3.5. From theorem 2.3 and 3.4, we can easily observe that , the degree distance of a complete bipartite graph is less than the degree distance of a shadow of a complete bibartite graph .

Theorem 3.6.

\n
$$
D'[S(K_m \times K_n)] = 4(m+n-2)[2m \cdot nC_2 + 2n \cdot mC_2 + mn(n-1)(m-1)] + 3(m+n-2)[2mn+n(n-1)+m(m-1)+2mn(n-1)(m-1)]
$$

Proof.

$$
D'[S(K_m \times K_n)] = \sum_{u,v \in V} [\deg u + \deg v] d(u,v)
$$

= $\sum_{u \in V_1', v \in V_2', x \in V_2'} [\deg(u,v) + \deg(u,x)] d[(u,v), (u,x)] +$
 $\sum_{u,v \in V_1', x \in V_2'} [\deg(u,x) + \deg(v,x)] d[(u,x), (v,x)] +$
 $\sum_{u,v \in V_1', x,y \in V_2'} [\deg(u,x) + \deg(v,y)] d[(u,x), (v,y)] +$
 $\sum_{u \in V_1'', v,x \in V_2'''} [\deg(u,v) + \deg(u,x)] d[(u,v), (u,x)] +$

ISSN NO: 2279-543X

$$
\sum_{u,v\in V_1} \sum_{v,x\in V_2} \int \left[\deg(u,x) + \deg(v,x) \right] d[(u,x),(v,x)] +
$$

\n
$$
\sum_{u,v\in V_1} \sum_{v,x\in V_2} \int \left[\deg(u,x) + \deg(v,y) \right] d[(u,x),(v,y)] +
$$

\n
$$
\sum_{u\in V_1} \int_{u'\in V_1} \int_{v'\in V_2} \int_{v'\in V_2} \int \left[\deg(u,v) + \deg(u',v) \right] d[(u,v),(u',v)] +
$$

\n
$$
\sum_{u\in V_1} \int_{u'\in V_1} \int_{v'\in V_2} \int_{v'\in V_2} \int \left[\deg(u,v) + \deg(x',x) \right] d[(u,v),(u',x)] +
$$

\n
$$
\sum_{u\in V_1} \int_{v'\in V_1} \int_{v\in V_2} \int_{v'\in V_2} \int \left[\deg(u,v) + \deg(x',y') \right] d[(u,v),(x',y')] +
$$

\n
$$
\sum_{u\in V_1} \int_{v'\in V_2} \int_{v'\in V_2} \int \left[\deg(u,v) + \deg(x',y') \right] d[(u,v),(x',y')] +
$$

\n
$$
\sum_{u,v\in V_1} \int_{v'\in V_2} \int_{v'\in V_2} \int \left[\deg(u,v) + \deg(x',y') \right] d[(u,v),(x',y')] +
$$

\n
$$
\sum_{u,v\in V_1} \int_{v'\in V_2} \int \left[\deg(u,v) + \deg(x',y') \right] d[(u,v),(x',y')] +
$$

\n
$$
\sum_{u,v\in V_1} \int_{v'\in V_2} \int \left[\deg(u,v) + \deg(x',y') \right] d[(u,v),(x',y')] +
$$

\n
$$
\sum_{u,v\in V_1} \int_{v'\in V_2} \int \left[\deg(u,v) + \deg(x',y') \right] d[(u,v),(x',y') -
$$

\n
$$
\sum_{u,v\in V_1} \int_{v'\in V_2} \int \left[\deg(u,v) + \deg(x',y') \right] d[(u,v),(x',y') -
$$

\n
$$
\sum_{u
$$

$$
+mn \cdot 6(m+n-2) + n(n-1) \cdot 3(m+n-2)
$$

$$
+m(m-1) \cdot 3(m+n-2) + n(n-1)(m-1+2m-2) + n(m-1) \cdot 6(m+n-2)
$$

Hence $D'[S(K_m \times K_n)] = 4(m+n-2)[2m \cdot nC_2 + 2n \cdot mC_2 + mn$

$$
(n-1)(m-1)] + 3(m+n-2)[2mn+n(n-1) + m(m-1) + 2mn(n-1)(m-1)]
$$

Theorem 3.7. The degree distance of a shadow of the line graph of a complete graph with n vertices is $n (n-2) [6n^3 - 22n^2 + 30n - 14]$

Proof.

$$
D' [S(L(K_n))] = \sum_{u,v \in V} [\deg u + \deg v] d(u,v)
$$

\n
$$
= \sum_{u,v \in E'} (\kappa_n) \& u,v \text{ adjacent } [\deg u + \deg v] d(u,v) +
$$

\n
$$
\sum_{u,v \in E'} (\kappa_n) \& u,v \text{ not adjacent } [\deg u + \deg v] d(u,v) +
$$

\n
$$
\sum_{u \in E'} (\kappa_n) \vee \sum_{u,v \in E''(\kappa_n) \& u,v \text{ adjacent } [\deg u + \deg v] d(u,v) +
$$

\n
$$
\sum_{u \in E'} (\kappa_n) \vee \sum_{u,v \in E''(\kappa_n) \& u,v \text{ not adjacent } [\deg u + \deg v] d(u,v) +
$$

\n
$$
\sum_{u,v \in E'} (\kappa_n) [\deg u + \deg v] d(u,v)
$$

\n
$$
= \sum_{u,v \in E'} (\kappa_n) \& u,v \text{ adjacent } [4(n-2) + 4(n-2)]1 +
$$

\n
$$
\sum_{u \in E'} (\kappa_n) \vee \sum_{u,v \in E''(\kappa_n) \& u,v \text{ adjacent } [4(n-2) + 2(n-2)]1 +
$$

\n
$$
\sum_{u \in E'} (\kappa_n) \vee \sum_{u,v \in E''(\kappa_n) \& u,v \text{ not adjacent } [4(n-2) + 2(n-2)]2 +
$$

\n
$$
\sum_{u,v \in E''(\kappa_n)} [2(n-2) + 2(n-2)]2
$$

\n
$$
= \frac{n c_2}{2} \cdot 2(n-2) \cdot 8(n-2) + \frac{n c_2}{2} [n c_2 - 1 - 2(n-2)] \cdot 16(n-2) +
$$

$$
nC_2 . 2(n-2) . 6(n-2) + {nC_2[nC_2 - 1 - 2(n-2)] + nC_2 } . 12(n-2) + (nC_2)C_2 . 8(n-2)
$$

= 10(n-2) $\left[\frac{n^4}{2} - 2n^3 + \frac{5n^2}{2} - n\right] + 6n(n-1)(n-2) + 8. (nC_2)C_2 . (n-2)$
= (n-2) $[5n^4 - 20n^3 + 25n^2 - 10n + 6n^2 - 6n + n^2(n-1)^2 - 2n(n-1)]$
= (n-2) $[5n^4 - 20n^3 + 31n^2 - 16n + n^4 - 2n^3 + n^2 - 2n^2 + 2n]$
Hence $D'[S(L(K_n))] = n (n-2) [6n^3 - 22n^2 + 30n - 14]$

4.Conclusion.

Hence

 In this paper we obtained the degree distance of a complete graph ,the sum of two complete graphs,the sum of a complement of two complete graphs , the line graph of a complete graph and some shadow graphs. Also it is shown that the degree distance of the complete graph is less than the degree distance of a shadow of a complete graph.

References

[1] A.A. Dobrynin, A.A. Kochetova, Degree distance of a graph: a degree analogue of the

Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) 1082_1086.

[2] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) 1087_1089.

[3] F. Harary, Graph Theory, Addision-Wesley(1969).

[4] I. Tomescu, Some extremal properties of the degree distance of a graph, Discrete Appl.Math. 98 (1999) 159_163.